3 research outputs found

    XNAT imaging platform for BioMedBridges and CTMM TraIT (meeting abstract)

    Get PDF
    1st Clinical Research Informatics (CRI) Solutions Day Duesseldorf, Germany, 26-27 May 2014ImPhys/Imaging PhysicsApplied Science

    Automatic normative quantification of brain tissue volume to support the diagnosis of dementia: A clinical evaluation of diagnostic accuracy

    No full text
    Objectives: To assesses whether automated brain image analysis with quantification of structural brain changes improves diagnostic accuracy in a memory clinic setting. Methods: In 42 memory clinic patients, we evaluated whether automated quantification of brain tissue volumes, hippocampal volume and white matter lesion volume improves diagnostic accuracy for Alzheimer's disease (AD) and frontotemporal dementia (FTD), compared to visual interpretation. Reference data were derived from a dementia-free aging population (n = 4915, aged >45 years), and were expressed as age- and sex-specific percentiles. Experienced radiologists determined the most likely imaging-based diagnosis based on structural brain MRI using three strategies (visual assessment of MRI only, quantitative normative information only, or a combination of both). Diagnostic accuracy of each strategy was calculated with the clinical diagnosis as the reference standard. Results: Providing radiologists with only quantitative data decreased diagnostic accuracy both for AD and FTD compared to conventional visual rating. The combination of quantitative with visual information, however, led to better diagnostic accuracy compared to only visual ratings for AD. This was not the case for FTD. Conclusion: Quantitative assessment of structural brain MRI combined with a reference standard in addition to standard visual assessment may improve diagnostic accuracy in a memory clinic setting.ImPhys/Quantitative Imagin

    A comparative study of software programmes for cross-sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients

    Get PDF
    Background: The association between body composition (e.g. sarcopenia or visceral obesity) and treatment outcomes, such as survival, using single-slice computed tomography (CT)-based measurements has recently been studied in various patient groups. These studies have been conducted with different software programmes, each with their specific characteristics, of which the inter-observer, intra-observer, and inter-software correlation are unknown. Therefore, a comparative study was performed. Methods: Fifty abdominal CT scans were randomly selected from 50 different patients and independently assessed by two observers. Cross-sectional muscle area (CSMA, i.e. rectus abdominis, oblique and transverse abdominal muscles, paraspinal muscles, and the psoas muscle), visceral adipose tissue area (VAT), and subcutaneous adipose tissue area (SAT) were segmented by using standard Hounsfield unit ranges and computed for regions of interest. The inter-software, intra-observer, and inter-observer agreement for CSMA, VAT, and SAT measurements using FatSeg, OsiriX, ImageJ, and sliceOmatic were calculated using intra-class correlation coefficients (ICCs) and Bland–Altman analyses. Cohen's κ was calculated for the agreement of sarcopenia and visceral obesity assessment. The Jaccard similarity coefficient was used to compare the similarity and diversity of measurements. Results: Bland–Altman analyses and ICC indicated that the CSMA, VAT, and SAT measurements between the different software programmes were highly comparable (ICC 0.979–1.000, P < 0.001). All programmes adequately distinguished between the presence or absence of sarcopenia (κ = 0.88–0.96 for one observer and all κ = 1.00 for all comparisons of the other observer) and visceral obesity (all κ = 1.00). Furthermore, excellent intra-observer (ICC 0.999–1.000, P < 0.001) and inter-observer (ICC 0.998–0.999, P < 0.001) agreement for all software programmes were found. Accordingly, excellent Jaccard similarity coefficients were found for all comparisons (mean ≥ 0.964). Conclusions: FatSeg, OsiriX, ImageJ, and sliceOmatic showed an excellent agreement for CSMA, VAT, and SAT measurements on abdominal CT scans. Furthermore, excellent inter-observer and intra-observer agreement were achieved. Therefore, results of studies using these different software programmes can reliably be compared.ImPhys/Quantitative Imagin
    corecore